RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)			
		SECOND YEAR [BATCH 2014-17] B.A./B.Sc. FOURTH SEMESTER (January – June) 2016 Mid-Semester Examination, March 2016	
Date : 19/03/2016 MATHEMATICS (General)			
Ime 12 noon – 1 pm Paper : IV Full Marks : 2			ks : 25
1.	An	swer <u>any three</u> questions :	[3×2]
:	a)	Evaluate, if exists, $\int_{0}^{1} \frac{dx}{x^{\frac{2}{3}}}$.	
1	b)	Evaluate, if exists, $\int_{0}^{\infty} \frac{dx}{1+x^2}$.	
	c)	Evaluate, if exists, $\int_{0}^{\pi} \frac{dx}{1 - \cos x}.$	
	d)	Prove that $\int_{0}^{\infty} e^{-kx} x^{n-1} dx = \frac{(n-1)!}{k^{n}}$ where $k > 0$ and n is a positive integer.	
	e)	Show that $\int_{0}^{1} x^{\frac{3}{2}} (1-x)^{\frac{3}{2}} dx = \frac{3\pi}{128}$.	
2.	An	swer <u>any one</u> question :	[1×4]
:	a)	Evaluate $\iint_{R} \frac{x-y}{x+y} dx dy$, where $R = \{0 \le x \le 1, 0 \le y \le 1\}$.	
1	b)	Determine $\iint_{R} (x^2 + y^2) dx dy$ where R is the region bounded by $y = x^2$, $x = 2$, $y = 1$.	
3.	An	swer <u>any three</u> questions :	[3×5]
:	a)	i) State Baye's theorem.	[2]
		11) The chance that a doctor will diagnose a certain disease correctly is 60%. The chance that a patient will die by his treatment after correct diagnosis is 40% and the chance of death by wrong diagnosis is 70%. A patient of the doctor who had the disease dies. What is the probability that the disease was diagnosed correctly?	[3]
1	b)	Find the value of the constant K such that	
		$f(x) = \begin{cases} Kx(1-x); 0 < x \le 1 \\ 0 ; elsewhere \end{cases}$	
		is a probability density function and compute $P\left(X > \frac{1}{2}\right)$.	
	c)	If X is a poisson (μ)-variate and P(X = 0) = P(X = 1), then find μ and P(X \ge 1).	
	d)	Find the approximate number of firms with annual sales lying between Rs. 70,000 and Rs. 7,00,000, where the distribution is given below :	
	e)	Annual Sales (Rs.'000) : $0-20\ 20-40\ 50-100\ 100-250\ 250-500\ 500-1000$ No. of Firms : 18 57 69 36 28 19 The expenditure of 100 families is given below Expenditure (Rs.) : $0-10\ 10-20\ 20-30\ 30-40\ 40-50$	

No. of families : 14 ? 27 ? 15

Mode of the distribution is 24. Calculate the missing frequencies.

_